El Deep Learning es una parte muy importante de la inteligencia artificial que busca un funcionamiento similar al del cerebro humano. Es decir, su objetivo es que las máquinas puedan “aprender” tal y como lo hacen los humanos. A continuación te mostramos un glosario Deep Learning para que tengas claros algunos de los términos más utilizados antes de formarte en KSchool en el curso de Especialización en Deep Learning que ofrecen en streaming.
Glosario Deep Learning
A continuación te mostramos un glosario con términos Deep Learning que deberías conocer para poder introducirte en este mundo.
Aprendizaje no supervisado
Así se conoce al proceso de entrenamiento de un algoritmo de inteligencia artificial. La información que utiliza no está etiquetada ni clasificada, por lo que se permite su actuación sobre la misma sin ningún tipo de guion.
Backpropagatio
Su significado es “backward pnropagation of errors” y es el algoritmo utilizado para el aprendizaje supervisado de redes neuronales artificiales. Estos usan gradiente de descendencia que funciona una vez aportada a cada red neuronal artificial una función de error. El método se encarga de calcular el gradiente de la función de error tomando como referencia los pesos de la red neuronal.
Clustering
Se trata de una técnica de aprendizaje automático no supervisada. Funciona por agrupación de identidades parecidas que buscan similitudes en el punto de datos, a continuación agruparan los diferentes puntos de datos que sean similares entre ellos.
Distribución gaussiana
Se trata de una distribución de probabilidad continua. También se la conoce como distribución normal ya que representa la probabilidad de que cualquier observación que se haya producido pueda ocurrir en diferentes puntos de un rango.
Embedding
Es una codificación o representación de entrada. Lo que se busca con ello es formar incrustaciones de palabras para predecir así el contexto de una de ellas de manera individual. En este sentido, también se pueden utilizar imágenes, sonidos y series de tiempo.
GPU
Se trata de una unidad de procesamiento de gráficos que es capaz de reproducir este tipo de contenidos en un dispositivo electrónico. Es la encargada de hacer que los usuarios disfruten de gráficos de buena calidad en juegos y vídeos.
Inteligencia artificial
Se trata de una de las partes esenciales de la industria tecnológica actual. Es un área de la informática cuyo objetivo es el de la creación de máquinas inteligentes que sean capaces de reaccionar y funcionar como los seres humanos.
Keras
Esta biblioteca de red neuronal de código abierto está escrita en Python y está pensada para una rápida experimentación con este tipo de redes. Su funcionamiento es modular, extensible y fácil de usar.
Matriz de confusión
Ayuda a resumir el rendimiento de un algoritmo de clasificación. Con ella se puede comprender qué es lo que está haciendo el modelo de clasificación y qué errores se están cometiendo.
Optimización
Con ello se busca alcanzar el rendimiento más alto posible con las limitaciones innatas de manera que se minimicen los factores no deseados y se maximicen aquellas que se quieren explotar.
Procesamiento del lenguaje natural (NLP)
Se trata de una rama de la inteligencia artificial cuyo cometido es el de ayudar a interpretar, comprender y manipular el lenguaje humano a los ordenadores. Busca por tanto acercar la comunicación de los humanos a los sistemas informáticos.
Redes neuronales
Son una variedad de tecnologías de Deep Learning. Estas toman como modelo las funciones y estructuras de las redes neuronales de humanos y animales. En estos casos, la información fluye a través de la red neuronal y afecta a su estructura haciendo que aprenda en función de su entrada o salida.
Sobreajuste
Aparece cuando un modelo busca predecir una tendencia, pero los datos generan demasiado ruido, esto hace que el modelo sea inexacto ya que no ayuda a reflejar la realidad de los mismos.
Transfer Learning
Es la aplicación del conocimiento adquirido por la máquina para poder resolver un problema tras completar una tarea diferente. Es decir se trata de la aplicación de una solución adquirida a un problema distinto al planteado inicialmente.
Vectorización
Ayuda a mejorar el rendimiento ya que permite ejecutar una sola instrucción en diferentes objetos de datos de manera paralela dentro de un único núcleo de CPU.
El artículo Glosario Deep Learning fue escrito el 21 de junio de 2022 y actualizado por última vez el 3 de diciembre de 2024 y guardado bajo la categoría Data Science. Puedes encontrar el post en el que hablamos sobre Glosario Deep Learning para aprender los conceptos más básicos que tratarás en el curso de Especialización en Deep Learning.
Esta formación te puede interesar
Programa Executive en People Analytics & HR Analytics
Crea y usa modelos efectivos en recursos humanos
Titulación conjunta con:
Nuestros cursos
Máster en Data Science
Domina las mejores técnicas de análisis de datos
Máster en Product Manager
Titulación conjunta con:
Descrubre nuestros cursos
24 · 11 · 2025
La Arquitectura Transformer: el corazón de los modelos de Deep Learning modernos
¿Quieres saber cuál es el verdadero origen del avance de la IA en tan poco tiempo y de forma tan rápida? Pues la respuesta es la Arquitectura Trasnformer. Te contamos cómo funciona, en qué se basa y cómo puede ayudarte a comprender cuáles son los fundamentos básicos del Deep Learning moderno. ¿Qué son los Transformers […]
24 · 11 · 2025
Herramientas de business intelligence y su importancia para la toma de decisiones estratégicas
Para tomar las mejores decisiones y adaptarlas a la estrategia de tu empresa o negocio, es necesario que puedas apoyarte en datos que te proporcionen la información que necesitas. Te contamos cómo las herramientas de Business Intelligence pueden ayudarte con ello para que logres sacarles el máximo rendimiento. ¿Qué son las herramientas de business intelligence […]
24 · 11 · 2025
Apache Spark: potencia tu análisis de datos a gran escala
Apache Spark es una de las tecnologías más utilizadas en Big Data ya que permite el uso de datos en memoria, es compatible con distintos lenguajes y funciona a través de módulos lo que hace que la información se pueda procesar en segundos y se transforme en conocimiento. Te contamos qué es Apache Spark y […]
04 · 11 · 2025
Data Mining (minería de datos): qué es, ejemplos y su impacto en la era digital
Cada clic, compra o interacción en redes genera información, lo que se traduce en millones de datos que, bien analizados, pueden revelar patrones ocultos, predecir comportamientos y permitir tomar decisiones empresariales. Esa es la esencia del data Mining, una de las competencias más demandadas en la actualidad. Te contamos qué es la minería de datos, […]