UNIR
Ver temas
Noticias Data Science

Última actualización: 12 · 12 · 2024

Herramientas para Data Scientists: las más habituales

¿Quieres sacarle el máximo partido al Data Scientist? Para ello es necesario conocer cuáles son las herramientas más habituales y qué usos tienen cada una de ellas. Te mostramos cuáles son las esenciales para que puedas aprovechar al máximo todo lo que la ciencia de datos puede aportarte. Herramientas para Data Scientist Las herramientas par […]

¿Quieres sacarle el máximo partido al Data Scientist? Para ello es necesario conocer cuáles son las herramientas más habituales y qué usos tienen cada una de ellas. Te mostramos cuáles son las esenciales para que puedas aprovechar al máximo todo lo que la ciencia de datos puede aportarte.

Herramientas para Data Scientist

Las herramientas par Data Scientist son cada vez más abundantes y tratan de resolver los problemas y optimizar el tiempo invertido para los profesionales en esta materia. Para que no te pierdas, te mostramos cuáles son las más habituales según la función que realizan.

H3: Herramientas para recogida de datos

La recogida de datos es esencial a la hora de poder hacer Data Science, sin ellos el resto del trabajo no se puede llevar a cabo. Para poder acceder a todo aquello que te ofrece el Big Data es imprescindible contar con herramientas en lenguaje Pyton como:

  • Mongo DB
  • Selenium
  • SQL

Herramientas para la visualización

Gracias a la visualización de datos podrás descubrir aquella información que no se muestra a simple vista, además de las tendencias entre las distintas recopilaciones. Con herramientas que tienen como objetivo la visualización podrás conocer de un solo vistazo los datos, y lo que es más importante, darles sentido. Con ellas conseguirás además la elaboración de informes fiables e intercambio de información interesante para poder procesar las grandes cantidades de información recogida. Algunas de las herramientas más usadas son:

  • Matplotlib
  • Plotly
  • Seaborn

Herramientas para el análisis de datos

El procesamiento de datos es una de las tareas en la que el Data Scientist debe tener más cuidado. Por este motivo, dar formato y contexto a los datos para ser interpretados y usados en los siguientes pasos es esencial. En estos casos se suelen usar herramientas de procesamiento de datos como:

  • NLTK
  • NumPy
  • Pandas
Alt de la imagen

Aprende Data Science

Aprende a analizar y aprovechar los datos de tu empresa para tomar decisiones más informadas y estratégicas

Herramientas para el modelado de datos

El modelado de datos permite tomar decisiones de manera estratégica. Es decir, con ello se busca representar cuál es el comportamiento de un fenómeno concreto de manera que pueda ayudar a resolver un problema empresarial.

En los casos en los que se utiliza Machine Learning es necesario que el algoritmo pueda servirse de datos de ejemplo que le permitan mejorar y entrenarse. Por tanto, estos deben estar bien modelados teniendo en cuenta qué es lo que se busca con ellos.

En ambos casos, es posible disponer de distintas herramientas que sirven para la realización de un correcto proceso de modelado como son:

  • Ludwig
  • Pytorch
  • Scikit learn
  • TensorFlow

Herramientas Machine Learning Operations

Las prácticas de Machine Learning Operations permiten una especialización en el ámbito del Data Scientist. En este sentido, las empresas necesitan proyectos de datos y para ello es necesario un correcto despliegue del sistema Machine Learning de manera que puedan aumentar la productividad y optimizar sus acciones de una forma eficaz. Estas herramientas, permiten sobre todo un desarrollo basado en la automatización y actuación durante todo el ciclo de vida de un modelo. Algunas de las más usadas son:

  • API
  • Docker
  • FastAPI

Estas son solo algunas de las herramientas más utilizadas en Data Scientists para la realización de las distintas fases que componen el proceso. En la actualidad podrás encontrar muchas más diferentes para adaptarse a distintas necesidades.

El artículo Herramientas para Data Scientists: las más habituales fue escrito el 23 de mayo de 2023 y actualizado por última vez el 12 de diciembre de 2024 y guardado bajo la categoría Data Science. Puedes encontrar el post en el que hablamos sobre .

Descrubre nuestros cursos

12 · 12 · 2024

¿Qué es un Data Scientists? Funciones y cómo trabajar de ello

¿Te has preguntado alguna vez qué hace un data scientist y cómo puedes convertirte en uno? Te contamos todo lo que necesitas saber sobre los científicos de datos: sus funciones, habilidades necesarias y los pasos a seguir para trabajar en este campo. ¿Qué es un data scientist? Un data scientist o científico de datos es […]

13 · 09 · 2024

El 2024 es el año de la IA: Tendencias para 2024

El año 2024 se presenta como clave para la Inteligencia Artificial, te contamos cuáles son las principales tendencias en IA en 2024. Una tecnología que pasará a formar parte de cada vez más ámbitos de nuestra vida y que promete la automatización de muchos procesos aumentando con ellos la eficacia en cualquier tarea. Tendencias de […]

Noticias Data Science

12 · 12 · 2024

¿Cuál es la diferencia entre Data Science vs Data Analytics?

En la actualidad existen muchas disciplinas que presentan similitudes y diferencias entre ellas, lo que puede llevar a confusión a la hora de saber cuáles son las funciones que realizan cada uno de los profesionales que se dedican a ellas por ello queremos resolver tus dudas sobre cuál es la diferencia entre Data Science y […]

13 · 12 · 2024

Herramientas para Data Scientists: las más habituales

¿Quieres sacarle el máximo partido al Data Scientist? Para ello es necesario conocer cuáles son las herramientas más habituales y qué usos tienen cada una de ellas. Te mostramos cuáles son las esenciales para que puedas aprovechar al máximo todo lo que la ciencia de datos puede aportarte. Herramientas para Data Scientists Las herramientas par […]