Tipos de aprendizaje automático

Los procesos de aprendizaje automático, también son conocidos como machine learning, y tienen una serie de tipos que podemos conocer y definir. En primer lugar, ¿sabes a qué nos referimos con machine learning? Aclaramos tus dudas al respecto y te explicamos en qué consiste cada una de los tipos de aprendizaje automático más utilizados.

Qué es el machine learning

El machine learning es un conjunto de algoritmos que realizan un aprendizaje automático con el objetivo de resolver problemas de distinta índole. Esto se consigue gracias a procedimientos en los que se aplica la experiencia de la máquina de manera automatizada ante determinadas situaciones con el objetivo de resolver, entre otros aquellos problemas que tengan que ver con series temporales o de clasificación facilitando el procesamiento de datos.

Tipos de aprendizaje automático

Dentro del aprendizaje automático podemos encontrarnos con cuatro tipos distintos, es decir, cuatro formas diferentes de resolver los problemas que se le pueden aportar a la inteligencia artificial para que esta los solucione.

Aprendizaje automático supervisado

En este tipo de métodos de aprendizaje automático, se cuenta con un conocimiento de los datos previos. Es uno de los más sencillos de llevar a cabo ya que se logra mediante unos datos ya conocidos, llamados datos de entrenamiento. Gracias a ellos se puede deducir una función cuyo objetivo sea el de realizar de la mejor forma posible entre unas entradas y unas salidas. Estas se denominan tuplas (X, Y) y hacen referencia a las variables que predicen y su salida respectivamente.

Aprendizaje automático semisupervisado

Este método busca la combinación entre los datos conocidos a priori y aquellos de los que desconocemos su respuesta. Se utiliza cuando queremos construir un modelo supervisado eficiente ya que permite un aumento de los datos supervisados o etiquetados, algo que ayuda a mejorar los resultados. El uso de los mismos permite etiquetar los datos que proceden de una distribución igual. Dentro de ellos podemos encontrar los siguientes:

  • Assemble
  • Co-training
  • Re-Weighting
  • Selft-training

Aprendizaje automático no supervisado

Dentro del aprendizaje automático no supervisado, se carece de cualquier dato conocido a priori. Con este tipo se busca crear un modelo para la distribución o estructuración de los datos introducidos y poder adquirir conocimiento de ellos. Dicho de otro modo, la inteligencia artificial busca resumir y entender un conjunto de datos que se le aporta. Es un aprendizaje subjetivo porque las respuestas que ofrecerá no serán correctas, sino que lo que se busca es establecer una estructura que sea interesante con respecto a las variables o datos introducidos.

Aprendizaje automático por refuerzo

Este tipo de aprendizaje se utiliza cuando nos enfrentamos a problemas que no están supervisados y en los que se aplica un refuerzo o alimentación externa. Es decir, la información o datos aportados como información supervisada son datos que conllevan una acción o reacción a un proceso. Busca, por tanto la conocer situaciones de acciones de manera que se maximiza la función de recompensa. Es decir, el algoritmo aprende por prueba y error.

Estos cuatro tipos de aprendizaje automático son los más empleados en la actualidad para conseguir facilitar multitud de procesos y procedimiento que tienen que ver con los datos.